6 research outputs found

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die FĂ€higkeit zur Perzeption als eine notwendige Voraussetzung fĂŒr eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption fĂŒr strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, wĂ€hrend die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterreprĂ€sentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natĂŒrlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und Ă€hnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell fĂŒr diesen Anwendungsbereich konzipiert und optimiert werden mĂŒssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden fĂŒr unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline fĂŒr autonome GelĂ€ndefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergĂ€nzen sich gegenseitig. DarĂŒber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden fĂŒr jede Ebene eine zuverlĂ€ssige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewĂ€hrleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns fĂŒr eine Vielzahl von GelĂ€ndefahrzeugen und AnwendungsfĂ€llen je nach Bedarf. Low-Level-Perzeption gewĂ€hrleistet eine eng gekoppelte Konfidenzbewertung fĂŒr rohe 2D- und 3D-Sensordaten, um SensorausfĂ€lle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewĂ€hrleisten. DarĂŒber hinaus werden neuartige Kalibrierungs- und RegistrierungsansĂ€tze fĂŒr Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur SchĂ€tzung der DisparitĂ€t von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren fĂŒr Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die DisparitĂ€t aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schĂ€tzt. Neuartige DisparitĂ€tsfehlermetriken und eine Evaluierungs-Toolbox fĂŒr die 3D-Rekonstruktion von Stereobildern ergĂ€nzen die vorgeschlagenen Methoden zur DisparitĂ€tsschĂ€tzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine DomĂ€nentransferanalyse fĂŒr State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen fĂŒr eine möglichst exakte Segmentierung in neuen ZieldomĂ€nen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz fĂŒr 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur ErklĂ€rbarkeit kĂŒnstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhĂ€ngigen ErklĂ€rungen fĂŒr CNN-Vorhersagen. Altlastensanierung und MilitĂ€rlogistik sind die beiden HauptanwendungsfĂ€lle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die LĂŒcke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette fĂŒr autonome GelĂ€ndefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lĂ€sst sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen fĂŒr autonome GelĂ€ndefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswĂŒrdige Perzeption unstrukturierter Umgebungen gewĂ€hrleistet

    A Step towards Explainable Artificial Neural Networks in Image Processing by Dataset Assessment

    Get PDF
    Artificial neural networks, image processing, premodeling explainability, robot vision system
    corecore